Glacier Summary and Recommendations

Photograph of the Crowfoot Glacier in the Rockies
Crowfoot Glacier in the Rockies

The focus of this study is to make an accurate estimate of ice volume given current knowledge of glaciers in the Rockies. We estimate this to be 55 (± 15) km3 for all of the glaciers in the eastern slopes, with 47 (± 15) km3 in Alberta and the remainder in the eastward-draining ice masses of the Peace River Basin in B.C. More than 75% of Alberta’s ice is contained in the headwaters of the North Saskatchewan and Athabasca Rivers, where the largest icefields are clustered.

The lack of glacier thickness (volume) data in the Canadian Rockies is very limiting. Without this data volume estimates have a high degree of error and models of ice dynamics cannot be expected to give realistic, detailed predictions of glacier response to ongoing climate change.

Ice thickness measurements through surface and airborne ice radar studies would be extremely valuable to improve on these uncertainties. Ice thickness studies across a suite of glacier size classes and glacier types are recommended. In particular, volume-area scaling relationships should be developed and tested for cirque glaciers and plateau icefields in the Rockies.

More data from small and intermediate-sized valley glaciers would help to reveal whether Athabasca Glacier is anomalously thick or if it is genuinely representative of the Canadian Rockies. Ice-thickness data from the Haig Glacier suggests that the latter may be true, but more studies are needed. Well-designed airborne radar ice-thickness mapping surveys would help to resolve this.

Photograph of Angel Glacier with chunk of ice in the foreground
Angel Glacier

Notwithstanding the challenge of predicting an accurate volume estimate from the current data, more could be done to examine the consistency of the estimates presented here. In particular, alternatives to volume-area scaling could be explored, such as that of Farinotti et al. (2009), which involves more detailed terrain characterization.

The volume estimate should be seen as a starting point for studies that include monitoring of volume and runoff changes in future years and decades. Studies of historical glacier volume loss have already been undertaken. Through the use of Shuttle Radar Topography Mission DEM data and archived DEMs from aerial imagery, glacier surface elevation changes can be found. The change in volume is then calculated by multiplying the difference in the surface height by surface area. This approach has been used in several mountain regions, and it provides a direct measure of glacier runoff. Ongoing monitoring of this type should be undertaken through LIDAR surveys (airborne laser profiling) of key icefields and glaciers, to provide volume-change estimates that can be tested against discharge records and provide empirical insight into regional trends.

Photograph across the Columbia icefields with mountain peaks in the distance.
Columbia icefields

Based on the regional mass balance model, we estimate recent (2000-2007) glacier runoff from the eastern slopes to be 0.62 (± 0.09) km3, equivalent to 3% to 4% of mean annual discharge and 7% to 8% of late summer (July to September) runoff in the North Saskatchewan and Bow Rivers in Edmonton and Calgary.

Future projections of the glacier cover on the eastern slopes, including a simple model of glacier dynamics, provide estimates of how glacier volume and runoff may change in the coming decades. If climate stabilizes such that mass balance rates like those of the 2000’s persist through the 21st century, about 40% of the glacier ice in the Rocky Mountains will disappear this century. If climate change continues as per the projections from climate scenarios, we estimate an 80% to 90% decrease in glacier volume by the end of the century.

Our models of regional glacier mass balance and glacier dynamics are simple, so we consider this to be a first-order, initial forecast for the 21st-century evolution of glaciers in the Rockies. Our model neglects the detailed topographic situation, climatology, and controls of mass balance for individual glaciers. More sophisticated, spatially-explicit models of glacier mass balance and ice dynamics should be developed and applied for improved, physically-based forecasts.

Photograph of WaterPortal Board Member Ross Douglas

Ross Douglas

Board Member

Ross has extensive executive experience in Operations, Governance, Information Technology and Strategy at the board and senior management level including Mancal Corporation, Mancal Energy, Highridge Exploration and Atlantis Resources. He has worked in Oil and Gas, Coal, Commercial Real Estate, Portfolio Management, Recreation, Retail and Water and Wastewater Treatment. His experience is also geographically diverse having overseen operations in Canada, the United States, United Kingdom and Northern Ireland. Additionally, he has been on the board of companies with operations in Argentina, Azerbaijan, Barbados, Kazakhstan, and Russia. He has served on numerous Public, Private and Not for Profit Boards across a number of industries.

Ross has been active on several industry Boards and committees including the Canadian Association of Petroleum Producers (CAPP) and The Schulich School of Engineering Industry Advisory Council at the Schulich School of Engineering.

Photograph of WaterPortal Board Member Brian Mergelas

Brian Mergelas, PhD, ICD.D

Board Member

Brian is a seasoned Cleantech entrepreneur with a proven history of successfully bringing complex water technologies to the market.   With over 25 years of experience, he has led various organizations to achieve significant milestones in the industry. 

Having started as the founding CEO of the Pressure Pipe Inspection Company (PPIC) and later taking the helm at the Water Technology Acceleration Project (WaterTAP), Brian’s entrepreneurial spirit has been instrumental in driving innovation and growth within the sector. 

He is an active investor in the cleantech sector and has served on many boards including the Ontario Clean Water Agency. 

Actively engaged in industry associations like AWWA, WEF, IWA, and ASCE, Brian enjoys collaborating with fellow professionals to promote advancements in the field. 

Brian holds an undergraduate degree and a PhD in Physics from Queen’s University, which has provided him with a solid technical foundation.   As a member of the Institute of Corporate Directors, he brings valuable insights to corporate governance.